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Figure 1: It is increasingly common for researchers to use data from personal health tracking apps in menstrual health
research, but this work rarely engages directly with the users who contributed the data. Our work explores how adding research
participants into the data analysis loop could help users understand more about their health, and improve the quality of
research conducted with this data.

ABSTRACT
Many people use health tracking apps to keep track of their men-
strual cycles, often in the hopes of better understanding their own
health, and being able to identify when something might be wrong.
However, it can be very difficult to interpret this data alone. Mean-
while, it is becoming increasingly common for researchers to use
data from these apps to learn more about menstrual health. In this
work we ask, how could more participatory approaches to con-
ducting menstrual health research benefit both participants and
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researchers? We identify key challenges and risks of this kind of
engagement, and propose four design guidelines for human-in-the-
loop data analysis tools that engage participants with large-scale,
quantitative menstrual health research: surface and elicit feedback
on the data cleaning and analysis procedure; convey information
relative to other users and clinical guidance; structure engagement
to ensure valid analyses; and support social engagement and learn-
ing. For each of these, we highlight key open research questions
relevant to the HILDA and visualization research communities. We
plan to for evaluate and iterate on these guidelines through design
workshops with users, researchers, and healthcare providers.
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1 INTRODUCTION
As more people have started using technology for tracking their
health and habits [20, 27], researchers have become interested
in using that data for scientific research. For example, with the
growing popularity of apps for tracking menstrual cycles [23, 60],
this has become a popular approach in menstrual health research
[30, 57, 73, 77]. The findings of this research could help users of
menstrual tracking apps improve their understanding of their own
cycles relative to others’, and learn more about menstrual health
more broadly [8, 12, 13, 17, 24, 44, 52, 75, 86]. Users could also
provide useful insights and feedback on the research, drawing on
their lived expertise and deep contextual knowledge of their data
[53, 74]. However, most of this research is not currently conducted
in a way that fosters bidirectional learning between researchers and
participants (Fig 1). Our work seeks to understand whether, and
if so what kind of, interactive data tools could foster this kind of
engagement in a way that maximizes benefits and minimizes risks
to users. In this paper we define and motivate a research agenda
to develop more open and collaborative methods for conducting
research with personal data.

We focus on menstrual tracking and menstrual health research
as a case study. People track their menstrual cycles to build general
self-awareness [23, 27], to manage and plan around their periods
[23, 51] or symptoms of specific conditions like fibroids, endometrio-
sis, or bleeding disorders [8, 51], to conceive or avoid pregnancy
[12, 23, 27, 52], and to learn about menstrual health generally. How-
ever, it is difficult for users to derive meaningful and interesting
insights from their data with existing tools, especially without clin-
ical guidance [7, 46] or the ability to compare their experiences to
others’ [13]. Although researchers have developed a wide variety
of bespoke visualizations to engage people with self-tracking data
[1, 2, 10, 19, 21, 25, 26, 33, 34, 37–42, 47, 50, 64, 69–72], most have
focused on individuals engaging with their own data, often in do-
mains like wellness and productivity, where users’ goals are more
often oriented towards behavior change, and the public has greater
general knowledge about the domain [20, 23].

In an ongoing research project, we are using self-logged men-
strual cycle data from over 6,000 users of a menstrual tracking
app, Clue by BioWink GmbH, to understand how menstrual cycle
characteristics in adolescents are associated with factors like stress,
and sleep. This research presents an opportunity to actively engage
participants in analyzing their own data, and comparing it to the
study population. In this paper, we explore the possible benefits
of increasing participation in research with menstrual tracking
data, as well as potential risks and challenges. We propose four
design guidelines for systems that could support this kind of en-
gagement: surface and elicit feedback on the data cleaning and
analysis procedure; convey information relative to other users and
clinical guidance; structure engagement to ensure valid analyses;
and support social engagement and learning. We plan to test and

iterate on these guidelines through design workshops with users,
researchers, and healthcare providers.

Engaging users who may have limited knowledge of both men-
strual health and data analysis in collaborative engagement with
researchers around menstrual health data opens up new directions
for research into human-in-the-loop data analysis tools. For in-
stance, how can we engage a large group of people in analyzing,
sharing, and co-learning with and through their collective data?
How can we help people interpret their data in the context of a
broader sample in a way that accounts for uncertainty and the
wide variability in menstrual cycle characteristics? How can we
incorporate expert guidance into the data exploration experience
without being overly prescriptive about how users can explore their
data? We look forward to feedback from the HILDA community
about how we can adapt the tools that have been developed in this
field to this new domain of menstrual health.

2 ENGAGING PARTICIPANTS IN RESEARCH
WITH PERSONAL DATA: BENEFITS AND
CHALLENGES

Across disciplines, researchers have worked to foster collaboration
with participants in their studies. For example, the participatory re-
search and citizen science methodologies center participants as key
contributors to the work, from formulating research questions, to
collecting and interpreting data [18, 36]. In this section we draw on
literature from these traditions to motivate our work and anticipate
risks and challenges.

2.1 Benefits
Engaging with menstrual health research using tracking data could
help participants learn more about their own health & men-
strual health more broadly, a key goal for many people who
track their periods [8, 12, 13, 24, 44, 51, 52, 75, 86]. Both the par-
ticipatory research and citizen science traditions emphasize the
importance of sharing findings with those who contributed to the
research, with participants’ learning being a key benefit of this prac-
tice [3, 4, 29, 76]. Prior work has found that tracking app users are
interested in comparing their data to others’, and some even share
their data online when comparison is not supported by existing
tools [13, 82]. Allowing users to explore their own data relative to
a research study cohort could support these kinds of comparisons
and help users interpret their data. Engaging users in research also
offers opportunities for them to learn about the research process
and improve their data literacy [43, 76].

Participatory research not only offers educational opportunities
for participants, but also enables researchers to draw on partic-
ipants’ lived experiences and contextual expertise. External
context is invaluable to the interpretation of personal data [53, 74].
For example, a participant in Moore et al.’s study of home air quality
data associated large spikes in poor air quality with times they had
cooked bacon – an insight that researchers working with this data
could never have derived alone [53]. People’s contextual under-
standing of their data could improve many stages of the research
process, from forming relevant and previously overlooked hypothe-
ses [51], to more accurate data cleaning and aggregation [53]. For
example, a major challenge in the context of menstrual tracking
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data is filtering lapses in app usage. Users may be able to provide
much more accurate information about their cycles and app usage
than could be inferred from the data alone.

Finally, our work is an opportunity to increase participant
awareness and oversight of large-scale quantitative research.
A 2014 study conducted as part of the Health Data Exploration
Project found that people are open to sharing their personal health
data with researchers, as long as they know it will not be used
for commercial purposes and that the research will have some
personal or public benefit [58]. McKillop et al. conducted workshops
with women with endometriosis, and also found that they were
open to participating in research involving self-logged personal
data, especially if the research would help younger people with the
condition [51]. Unfortunately, research with large-scale personal
data has not always met participants’ expectations [32, 66]. This
has led to calls for ensuring that data subjects are aware of research
conducted with their data, and have some power to shape the
kinds of questions asked and how the benefits of the research are
distributed [59, 66].

2.2 Risks and Challenges
Achieving these benefits in practice will be challenging, especially
at the scale of many quantitative research studies, which can involve
thousands, or even millions, of participants distributed around the
world [57].

An important challenge will be preventing misinterpretation,
over-diagnosis, and unnecessary concern for users. One of the
major issues with existing personal health technologies is a lack
of clinical validation [16, 24, 88]. Period tracking apps have had
to withdraw even clinically validated diagnostic screening tools
after they raised concern about over-diagnosis and unnecessary
stress for users [67]. In the context of fertility tracking, research has
found that aggregating data across users can help individuals better
interpret their own data, but it can also enforce norms and generate
stress and anxiety, especially when it is unclear how clincially valid
the aggregate analyses are [13]. This presents a difficult trade-off
between empowering people to better understand their health, and
exercising caution to avoid misinformation and unnecessary stress.
Researchers across the health sciences have grappled with this chal-
lenge and put forth best practices, such as providing personalized
support and clinical guidelines to help people interpret study re-
sults [6, 54], but these practices remain contested [54]. One goal of
this work is to better understand these risks and develop mitigation
strategies in the context of participant engagement with menstrual
health research with tracking-data.

Another critical challenge will be protecting participants’ pri-
vacy. Menstrual cycles and other personal health data are extremely
personal and intimate data sources, and users’ privacy must be a
top priority. Tools for engaging with research data must be carefully
designed to protect individuals’ and vulnerable subpopulations’ in-
formation. Unfortunately, many period tracking apps have violated
users’ trust by selling their data to third parties [31]. Although
research suggests that many people are open to sharing data with
researchers, it is not clear how many users know how their data is
used, and by whom, nor do we have a clear understanding of track-
ing app users’ contextual expectations of privacy [58]. A first step

towards this understanding is ensuring that participants are aware
of how their data is being used, and give themmore opportunities to
opt out of participating. Engaging users with this kind of research
more actively could be a useful way to begin developing norms
and expectations around privacy, and empower users to advocate
for their privacy and make informed decisions about technology
use. While the remainder of this paper focuses on ways to engage
users with research in a way that maximizes benefits and mitigates
risk, we recognize that we may find in the course of developing this
work that the risks of such engagement may outweigh the benefits.

3 DESIGN GUIDELINES
Engaging users and researchers with personal health data in a mu-
tually beneficial way will require interactive systems that allow
users to explore their data with neither technical nor domain ex-
pertise. Research in the human-in-the-loop data analytics (HILDA)
and broader data visualization community has explored ways of
making it easier for a range of audiences to engage with large-scale
quantitative data. For example, interfaces that allow users to build
visualizations using natural language [28, 63, 65], or demonstra-
tions (e.g. other visualizations, sketches, or constraints) [61, 62, 68,
80, 81, 84, 85], or that recommend relevant visualizations based on
partial specifications [49, 55, 83] or interesting patterns in a dataset
[37, 38, 45] all have great potential for allowing end-users of self-
tracking apps to freely explore and visualize their data without
needing to code.

However, many existing tools for analyzing and visualizing data
without needing to write code have been designed for domain
experts. People who use tracking apps may have deep expertise
on their own experiences, but many will have limited menstrual
health literacy and data literacy. In this section, we discuss four
design guidelines for systems to engage these people with research
data, informed by prior work on data visualization for personal
health data and participatory research. We highlight open research
questions relevant to the HILDA community that each of these
guidelines raise. Figure 2 envisions how these guidelines might
be applied to visualization tools, using menstrual cycle length and
regularity as an example. These guidelines are hypotheses about
how we might be able to support engagement, maximizing the
benefits and mitigating the risks outlined in the previous section,
and we plan to test and refine these guidelines in the context of an
ongoing menstrual health research project.

(DG1) Surface and elicit feedback on the data cleaning and
analysis procedure. How data has been collected, cleaned, and
aggregated is often abstracted away in data visualization systems,
but it is also an extremely consequential process involving many
value-laden decisions [5, 11]. Surfacing this process is key to giving
users meaningful oversight of the research, as well as leveraging
their expertise to improve the effectiveness of data cleaning. For
instance, as mentioned above, a particularly important case for
period tracking data is removing cycles where a user stopped using
or forgot to use the app. However, it is difficult to communicate
complex analysis methods in a way that is digestible and under-
standable to a broad audience [5, 11]. Providing editing tools for
users to annotate these cycles not only gives researchers the op-
portunity to improve their data cleaning, but also to learn more
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Figure 2: Explorations of how data visualization tools could engage participants with menstrual health research in line with the
four guidelines. (a) Users could contribute to data cleaning and provide further insight into their data in the process through
short, focused follow-up surveys (DG1). (b) Visualizations should support appropriate comparisons and baselines (DG2). (c)
Users should have ways to share what they learn and collaboratively make sense of the data (DG4).

about the data and the participants. For example, users could be
asked follow-up survey questions about why they are editing their
data (Fig. 2(a)). Open questions: How can tools surface the data
cleaning and analysis methods in a way that is understandable and
useful to participants? How can we elicit feedback from users in a
way that can be integrated back into the analysis procedure? How
can we ensure that users understand how their feedback has been
accounted for?

(DG2) Convey uncertainty and variability when making
comparisons. Comparison against baselines and peers is impor-
tant for users to be able to contextualize and interpret their data
[6, 13, 35, 37] (Fig. 2(b)). However, comparison can also promote
strict norms and create stress for those who appear to fall outside
of them [13]. Tools should provide information to help people inter-
pret these comparisons, mitigate unnecessary stress, and connect
users to healthcare providers or other sources of support [6, 54]. It
is an open question how visualizations can or should convey bad
news and have an appropriate impact on an audience [6, 11], and
this is likely to be even more challenging when a visualization is
conveying information about the viewer’s own health, since people
engage most with visualizations that they can directly relate to
[56]. This issue is complicated by the fact that menstrual cycles are
extremely variable and individual, so comparative visualizations
may often look concerning to a user when they have nothing to
worry about. On the other hand, many people who do have health
conditions related to their menstrual cycles, e.g. endometriosis,
struggle for years to get a diagnosis [13]. There is a balance to
strike between avoiding unnecessary concern and over-diagnosis,
while also not dismissing people’s valid health concerns [8]. Open
questions: How should we visualize uncertainty in the context of
highly variable and individualized distributions? Can uncertainty
visualization mitigate unncessary stress and over-diagnosis? What
are the implications of allowing comparative analyses for individ-
ual and sub-group privacy? Could we automatically detect when
someone views a visualization that might be worrisome and offer
relevant resources?

(DG3) Structure engagement to ensure valid analyses. Ide-
ally, participants should be able to explore the data flexibly and
answer questions that are most personally relevant to them. Tools
that allow users to create visualizations using direct manipula-
tion and/or natural language [28, 61–63, 65, 68, 80, 81, 84, 85], or
even visualization recommendation systems [37, 38, 45, 49, 55, 83],
are likely to be important to support creative and open-ended en-
gagement. A challenge with supporting open-ended exploration,
however, will be ensuring that users do not conduct meaningless
or misleading analyses [11, 87]. Identifying questions that can be
answered with a given dataset is challenging even for experienced
analysts [14]. Engagement should therefore allow open-ended en-
gagement as much as possible while remaining structured enough
to guide users to valid analyses and interpretations. For exam-
ple, users should be guided towards reasonable comparisons and
baselines, and away from trying to make causal inferences from
observational data. Open questions: Can we automatically detect
when a user tries to conduct an analysis that is not well supported
by the data? How can we interactively teach users how to ask valid
questions and interpret their results?

(DG4) Support social engagement and learning. Research
on personal health informatics is increasingly acknowledging the
social dimensions of health tracking [9, 22, 48, 78]. Social engage-
ment, even if passive, is important for learning [15, 75, 79] and can
be a source of support, particularly for people with chronic health
conditions [8, 44]. Much of this kind of support and collective sense-
making defies quantification and analysis in the way that would be
supported by engaging people on an isolated, individual basis with
quantitative menstrual health research. Open questions: How
can we support asynchronous and (possibly) anonymous collab-
oration in understanding and contributing to quantitative health
research? How does social engagement mitigate or worsen the risks
of misinformation and over-diagnosis?

4 FUTUREWORK
The guidelines we have proposed are hypotheses informed by prior
literature, andwill need to be tested and validated before beingmore
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widely used in the field. The first two authors are currently using
data from Clue by BioWink GmbH, a popular period tracking app,
to characterize menstrual cycles in adolescents, and investigate how
cycle characteristics are associatedwith behavioral factors like sleep
and stress. Our future work will involve engaging participants with
this research more deeply, evaluating and adapting these guidelines
in the process.

In the longer term, we hope to see research conducted in col-
laboration with participants from generating research questions
and hypotheses, through to dissemination. We believe the HILDA
community can play a critical role in building tools to support this
vision.

5 CONCLUSION
In this paper we argued that engaging participants directly in re-
search with large-scale data from menstrual cycle tracking apps has
great potential to benefit participants and improve research. How-
ever, this engagement will not be without risk, especially around
misinterpretation and over-diagnosis, and privacy. We presented
early design guidelines for systems that could support this engage-
ment, and described our plans to evaluate and iterate on them
through design workshops. We look forward to feedback from the
HILDA community about how we can extend tools for exploring
and visualizing data without code, as well as how to visualize in-
dividuals’ data in the context of an uncertain and highly variable
distribution.
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